[Resource Topic] 2014/938: Trapdoor Computational Fuzzy Extractors and Stateless Cryptographically-Secure Physical Unclonable Functions

Welcome to the resource topic for 2014/938

Title:
Trapdoor Computational Fuzzy Extractors and Stateless Cryptographically-Secure Physical Unclonable Functions

Authors: Charles Herder, Ling Ren, Marten van Dijk, Meng-Day (Mandel) Yu, Srinivas Devadas

Abstract:

We present a fuzzy extractor whose security can be reduced to the hardness of Learning Parity with Noise (LPN) and can efficiently correct a constant fraction of errors in a biometric source with a noise-avoiding trapdoor." Using this computational fuzzy extractor, we present a stateless construction of a cryptographically-secure Physical Unclonable Function. Our construct requires no non-volatile (permanent) storage, secure or otherwise, and its computational security can be reduced to the hardness of an LPN variant under the random oracle model. The construction is stateless,‘’ because there is \emph{no} information stored between subsequent queries, which mitigates attacks against the PUF via tampering. Moreover, our stateless construction corresponds to a PUF whose outputs are free of noise because of internal error-correcting capability, which enables a host of applications beyond authentication. We describe the construction, provide a proof of computational security, analysis of the security parameter for system parameter choices, and present experimental evidence that the construction is practical and reliable under a wide environmental range.

ePrint: https://eprint.iacr.org/2014/938

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .