Welcome to the resource topic for 2014/857
Title:
Pseudonymous Broadcast and Secure Computation from Cryptographic Puzzles
Authors: Jonathan Katz, Andrew Miller, Elaine Shi
Abstract:In standard models of distributed computation, point-to-point channels between parties are assumed to be authenticated by some pre-existing means. In other cases, even stronger pre-existing setup—e.g., a public-key infrastructure (PKI)—is assumed. These assumptions are too strong for open, peer-to-peer networks, where parties do not necessarily have any prior relationships and can come and go as they please. Nevertheless, these assumptions are made due to the prevailing belief that nothing “interesting” can be achieved without them. Taking inspiration from Bitcoin, we show that precise bounds on computational power can be used in place of pre-existing setup to achieve weaker (but nontrivial) notions of security. Specifically, under the assumption that each party can solve cryptographic puzzles only at a bounded rate (and the existence of digital signatures), we show that without prior setup and with no bound on the number of corruptions, a group of parties can agree on a PKI with which they can then realize pseudonymous notions of authenticated communication, broadcast, and secure computation. Roughly, “pseudonymous” here means that parties are identified by pseudoynms rather than by their true identities.
ePrint: https://eprint.iacr.org/2014/857
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .