[Resource Topic] 2014/830: Adaptively Secure Multi-Party Computation from LWE (via Equivocal FHE)

Welcome to the resource topic for 2014/830

Title:
Adaptively Secure Multi-Party Computation from LWE (via Equivocal FHE)

Authors: Ivan Damgård, Antigoni Polychroniadou, Vanishree Rao

Abstract:

Adaptively secure Multi-Party Computation (MPC) is an essential and fundamental notion in cryptography. In this work, we construct Universally Composable (UC) MPC protocols that are adaptively secure against all-but-one corruptions based on LWE. Our protocols have a constant number of rounds and communication complexity dependant only on the length of the inputs and outputs (it is independent of the circuit size). Such protocols were only known assuming an honest majority. Protocols in the dishonest majority setting, such as the work of Ishai et al. (CRYPTO 2008), require communication complexity proportional to the circuit size. In addition, constant-round adaptively secure protocols assuming dishonest majority are known to be impossible in the stand-alone setting with black-box proofs of security in the plain model. Here, we solve the problem in the UC setting using a set-up assumption which was shown necessary in order to achieve dishonest majority. The problem of constructing adaptively secure constant-round MPC protocols against arbitrary corruptions is considered a notorious hard problem. A recent line of works based on indistinguishability obfuscation construct such protocols with near-optimal number of rounds against arbitrary corruptions. However, based on standard assumptions, adaptively secure protocols secure against even just all-but-one corruptions with near-optimal number of rounds are not known. However, in this work we provide a three-round solution based only on LWE and NIZK secure against all-but-one corruptions. In addition, Asharov et al. (EUROCRYPT 2012) and more recently Mukherjee and Wichs (ePrint 2015) presented constant-round protocols based on LWE which are secure only in the presence of static adversaries. Assuming NIZK and LWE their static protocols run in two rounds where the latter one is only based on a common random string. Assuming adaptively secure UC NIZK, proposed by Groth et al. (ACM 2012), and LWE as mentioned above our adaptive protocols run in three rounds. Our protocols are constructed based on a special type of cryptosystem we call equivocal FHE from LWE. We also build adaptively secure UC commitments and UC zero-knowledge proofs (of knowledge) from LWE. Moreover, in the decryption phase using an AMD code mechanism we avoid the use of ZK and achieve communication complexity that does not scale with the decryption circuit.

ePrint: https://eprint.iacr.org/2014/830

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .