Welcome to the resource topic for 2014/813
Title:
Boosting Linearly-Homomorphic Encryption to Evaluate Degree-2 Functions on Encrypted Data
Authors: Dario Catalano, Dario Fiore
Abstract:We show a technique to transform a linearly-homomorphic encryption into a homomorphic encryption scheme capable of evaluating degree-2 computations on ciphertexts. Our transformation is surprisingly simple and requires only one very mild property on the underlying linearly-homomorphic scheme: the message space must be a public ring in which it is possible to sample elements uniformly at random. This essentially allows us to instantiate our transformation with virtually all existing number-theoretic linearly-homomorphic schemes, such as Goldwasser-Micali, Paillier, or ElGamal. Our resulting schemes achieve circuit privacy and are compact when considering a subclass of degree-2 polynomials in which the number of additions of degree-2 terms is bounded by a constant. As an additional contribution we extend our technique to build a protocol for outsourcing computation on encrypted data using two (non-communicating) servers. Somewhat interestingly, in this case we can boost a linearly-homomorphic scheme to support the evaluation of any degree-2 polynomial while achieving full compactness.
ePrint: https://eprint.iacr.org/2014/813
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .