[Resource Topic] 2014/767: Algebraic Attacks on Human Identification Protocols

Welcome to the resource topic for 2014/767

Title:
Algebraic Attacks on Human Identification Protocols

Authors: Hassan Jameel Asghar, Ron Steinfeld, Shujun Li, Mohamed Ali Kaafar, Josef Pieprzyk

Abstract:

Human identification protocols are challenge-response protocols that rely on human computational ability to reply to random challenges from the server based on a public function of a shared secret and the challenge to authenticate the human user. One security criterion for a human identification protocol is the number of challenge-response pairs the adversary needs to observe before it can deduce the secret. In order to increase this number, protocol designers have tried to construct protocols that cannot be represented as a system of linear equations or congruences. In this paper, we take a closer look at different ways from algebra, lattices and coding theory to obtain the secret from a system of linear congruences. We then show two examples of human identification protocols from literature that can be transformed into a system of linear congruences. The resulting attack limits the number of authentication sessions these protocols can be used before secret renewal. Prior to this work, these protocols had no known upper bound on the number of allowable sessions per secret.

ePrint: https://eprint.iacr.org/2014/767

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .