[Resource Topic] 2014/610: Computing on the Edge of Chaos: Structure and Randomness in Encrypted Computation

Welcome to the resource topic for 2014/610

Title:
Computing on the Edge of Chaos: Structure and Randomness in Encrypted Computation

Authors: Craig Gentry

Abstract:

This survey, aimed mainly at mathematicians rather than practitioners, covers recent developments in homomorphic encryption (computing on encrypted data) and program obfuscation (generating encrypted but functional programs). Current schemes for encrypted computation all use essentially the same “noisy” approach: they encrypt via a noisy encoding of the message, they decrypt using an “approximate” ring homomorphism, and in between they employ techniques to carefully control the noise as computations are performed. This noisy approach uses a delicate balance between structure and randomness: structure that allows correct computation despite the randomness of the encryption, and randomness that maintains privacy against the adversary despite the structure. While the noisy approach “works”, we need new techniques and insights, both to improve efficiency and to better understand encrypted computation conceptually.

ePrint: https://eprint.iacr.org/2014/610

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .