[Resource Topic] 2014/430: Revisiting the Gentry-Szydlo Algorithm

Welcome to the resource topic for 2014/430

Title:
Revisiting the Gentry-Szydlo Algorithm

Authors: H. W. Lenstra, A. Silverberg

Abstract:

We put the Gentry-Szydlo algorithm into a mathematical framework, and show that it is part of a general theory of ``lattices with symmetry’'. For large ranks, there is no good algorithm that decides whether a given lattice has an orthonormal basis. But when the lattice is given with enough symmetry, we can construct a provably deterministic polynomial time algorithm to accomplish this, based on the work of Gentry and Szydlo. The techniques involve algorithmic algebraic number theory, analytic number theory, commutative algebra, and lattice basis reduction. This sheds new light on the Gentry-Szydlo algorithm, and the ideas should be applicable to a range of questions in cryptography.

ePrint: https://eprint.iacr.org/2014/430

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .