Welcome to the resource topic for 2014/256
Title:
Private and Dynamic Time-Series Data Aggregation with Trust Relaxation
Authors: Iraklis Leontiadis, Kaoutar Elkhiyaoui, Refik Molva
Abstract:Abstract. With the advent of networking applications collecting user data on a massive scale, the privacy of individual users appears to be a major concern. The main challenge is the design of a solution that allows the data analyzer to compute global statistics over the set of individual inputs that are protected by some confidentiality mechanism. Joye et al. [7] recently suggested a solution that allows a centralized party to compute the sum of encrypted inputs collected through a smart metering network. The main shortcomings of this solution are its reliance on a trusted dealer for key distribution and the need for frequent key updates. In this paper we introduce a secure protocol for aggregation of time series data that is based on the Joye et al. [7] scheme and in which the main shortcomings of the latter, namely, the requirement for key updates and for the trusted dealer are eliminated. Moreover our scheme supports a dynamic group management, whereby as opposed to Joye et al. [7] leave and join operations do not trigger a key update at the users.
ePrint: https://eprint.iacr.org/2014/256
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .