[Resource Topic] 2014/1021: Tightly-Secure Signatures from Chameleon Hash Functions

Welcome to the resource topic for 2014/1021

Title:
Tightly-Secure Signatures from Chameleon Hash Functions

Authors: Olivier Blazy, Saqib A. Kakvi, Eike Kiltz, Jiaxin Pan

Abstract:

We give a new framework for obtaining signatures with a tight security reduction from standard hardness assumptions. Concretely, we show that any Chameleon Hash function can be transformed into a (binary) tree-based signature scheme with tight security. The transformation is in the standard model, i.e., it does not make use of any random oracle. For specific assumptions (such as RSA, Diffie-Hellman and Short Integer Solution (SIS)) we further manage to obtain a more efficient flat-tree construction. Our framework explains and generalizes most of the existing schemes as well as providing a generic means for constructing tight signature schemes based on arbitrary assumptions, which improves the standard Merkle tree transformation. Moreover, we obtain the first tightly secure signature scheme from the SIS assumption and several schemes based on Diffie-Hellman in the standard model. Some of our signature schemes can (using known techniques) be combined with Groth-Sahai proof methodology to yield tightly secure and efficient simulation-sound NIZK proofs of knowledge and CCA-secure encryption in the multi-user/-challenge setting under classical assumptions.

ePrint: https://eprint.iacr.org/2014/1021

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .