Welcome to the resource topic for 2014/080
Title:
A Full Characterization of Completeness for Two-party Randomized Function Evaluation
Authors: Daniel Kraschewski, Hemanta K. Maji, Manoj Prabhakaran, Amit Sahai
Abstract:We settle a long standing open problem which has pursued a full characterization of completeness of (potentially randomized) finite functions for 2-party computation that is secure against active adversaries. Since the first such complete function was discovered [Kilian, FOCS 1988], the question of which finite 2-party functions are complete has been studied extensively, leading to characterization in many special cases. In this work, we completely settle this problem. We provide a polynomial time algorithm to test whether a 2-party finite secure function evaluation (SFE) functionality (possibly randomized) is complete or not. The main tools in our solution include: – A formal linear algebraic notion of redundancy'' in a general 2-party randomized function. -- A notion of
statistically testable games.‘’ A kind of interactive proof in the information-theoretic setting where both parties are computationally unbounded but differ in their knowledge of a secret. – An extension of the (weak) converse of Shannon's channel coding theorem,'' where an adversary can adaptively choose the channel based on it view. We show that any function f, if complete, can implement any (randomized) circuit C using only O(|C| + k) calls to f, where k is the statistical security parameter. In particular, for any two-party functionality g, this establishes a universal notion of its quantitative
cryptographic complexity’’ independent of the setup and has close connections to circuit complexity.
ePrint: https://eprint.iacr.org/2014/080
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .