[Resource Topic] 2013/811: Constant-Round Black-Box Construction of Composable Multi-Party Computation Protocol

Welcome to the resource topic for 2013/811

Title:
Constant-Round Black-Box Construction of Composable Multi-Party Computation Protocol

Authors: Susumu Kiyoshima, Yoshifumi Manabe, Tatsuaki Okamoto

Abstract:

We present the first general MPC protocol that satisfies the following: (1) the construction is black-box, (2) the protocol is universally composable in the plain model, and (3) the number of rounds is constant. The security of our protocol is proven in angel-based UC security under the assumption of the existence of one-way functions that are secure against sub-exponential-time adversaries and constant-round semi-honest oblivious transfer protocols that are secure against quasi-polynomial-time adversaries. We obtain the MPC protocol by constructing a constant-round CCA-secure commitment scheme in a black-box way under the assumption of the existence of one-way functions that are secure against sub-exponential-time adversaries. To justify the use of such a sub-exponential hardness assumption in obtaining our constant-round CCA-secure commitment scheme, we show that if black-box reductions are used, there does not exist any constant-round CCA-secure commitment scheme under any falsifiable polynomial-time hardness assumptions.

ePrint: https://eprint.iacr.org/2013/811

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .