[Resource Topic] 2013/603: Invariance-Based Concurrent Error Detection for Advanced Encryption Standard

Welcome to the resource topic for 2013/603

Invariance-Based Concurrent Error Detection for Advanced Encryption Standard

Authors: Xiaofei Guo, Ramesh Karri


Naturally occurring and maliciously injected faults reduce the reliability of Advanced Encryption Standard (AES) and may leak confidential information. We developed an invariance-based concurrent error detection (CED) scheme which is independent of the implementation of AES encryption/decryption. Additionally, we improve the security of our scheme with Randomized CED Round Insertion and adaptive checking. Experimental results show that the invariance-based CED scheme detects all single-bit, all single-byte fault, and 99.99999997% of burst faults. The area and delay overheads of this scheme are compared with those of previously reported CED schemes on two Xilinx Virtex FPGAs. The hardware overhead is in the 13.2-27.3% range and the throughput is between 1.8-42.2Gbps depending on the AES architecture, FPGA family, and the detection latency. One can im- plement our scheme in many ways; designers can trade off performance, reliability, and security according to the available resources.

ePrint: https://eprint.iacr.org/2013/603

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .