[Resource Topic] 2013/597: Efficient Pairings Computation on Jacobi Quartic Elliptic Curves

Welcome to the resource topic for 2013/597

Title:
Efficient Pairings Computation on Jacobi Quartic Elliptic Curves

Authors: Sylvain Duquesne, Nadia El Mrabet, Emmanuel Fouotsa

Abstract:

This paper proposes the computation of the Tate pairing, Ate pairing and its variations on the special Jacobi quartic elliptic curve Y^2 = dX^4 +Z^4. We improve the doubling and addition steps in Miller’s algorithm to compute the Tate pairing. We use the birational equivalence between Jacobi quartic curves and Weierstrass curves, together with a specific point representation to obtain the best result to date among curves with quartic twists. For the doubling and addition steps in Miller’s algorithm for the computation of the Tate pairing, we obtain a theoretical gain up to 27% and 39%, depending on the embedding degree and the extension field arithmetic, with respect to Weierstrass curves [2] and previous results on Jacobi quartic curves [3]. Furthermore and for the first time, we compute and implement Ate, twisted Ate and optimal pairings on the Jacobi quartic curves. Our results are up to 27% more efficient, comparatively to the case of Weierstrass curves with quartic twists [2].

ePrint: https://eprint.iacr.org/2013/597

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .