Welcome to the resource topic for 2013/200
Title:
Selecting polynomials for the Function Field Sieve
Authors: Razvan Barbulescu
Abstract:The Function Field Sieve algorithm is dedicated to computing discrete logarithms in a finite field GF(q^n) , where q is a small prime power. The scope of this article is to select good polynomials for this algorithm by defining and measuring the size property and the so-called root and cancellation properties. In particular we present an algorithm for rapidly testing a large set of polynomials. Our study also explains the behaviour of inseparable polynomials, in particular we give an easy way to see that the algorithm encompass the Coppersmith algorithm as a particular case.
ePrint: https://eprint.iacr.org/2013/200
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .