[Resource Topic] 2012/728: Defensive Leakage Camouflage

Welcome to the resource topic for 2012/728

Defensive Leakage Camouflage

Authors: E. Brier, Q. Fortier, R. Korkikian, K. W. Magld, D. Naccache, G. Ozari de Almeida, A. Pommellet, A. H. Ragab, J. Vuillemin


This paper considers the transfer of digital data over {\sl leaky and noisy} communication channels. We develop defensive strategies exploiting the fact that noise prevents the attacker from accurately measuring leakage. The defense strategy described in this paper pairs each useful data element k with a camouflage value v and simultaneously transmits both k and v over the channel. This releases an emission e(k,v). We wish to select the camouflage values v(k) as a function of k in a way that makes the quantities e(k,v(k)) as {\sl indistinguishable} as possible from each other. We model the problem and show that optimal camouflage values can be computed from side-channels under very weak physical assumptions. The proposed technique is hence applicable to a wide range of readily available technologies. We propose algorithms for computing optimal camouflage values when the number of samples per trace is moderate (typically \leq 6) and justify our models by a statistical analysis. We also provide experimental results obtained using FPGAs.

ePrint: https://eprint.iacr.org/2012/728

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .