[Resource Topic] 2012/657: Fixed Argument Pairing Inversion on Elliptic Curves

Welcome to the resource topic for 2012/657

Title:
Fixed Argument Pairing Inversion on Elliptic Curves

Authors: Sungwook Kim, Jung Hee Cheon

Abstract:

Let E be an elliptic curve over a finite field {\mathbb F}_q with a power of prime q, r a prime dividing \#E({\mathbb F}_q), and k the smallest positive integer satisfying r | \Phi_k(p), called embedding degree. Then a bilinear map t: E({\mathbb F}_q)[r] \times E({\mathbb F}_{q^k})/rE({\mathbb F}_{q^k}) \rightarrow {\mathbb F}_{q^k}^* is defined, called the Tate pairing. And the Ate pairing and other variants are obtained by reducing the domain for each argument and raising it to some power. In this paper we consider the {\em Fixed Argument Pairing Inversion (FAPI)} problem for the Tate pairing and its variants. In 2012, considering FAPI for the Ate$_i$ pairing, Kanayama and Okamoto formulated the {\em Exponentiation Inversion (EI)} problem. However the definition gives a somewhat vague description of the hardness of EI. We point out that the described EI can be easily solved, and hence clarify the description so that the problem does contain the actual hardness connection with the prescribed domain for given pairings. Next we show that inverting the Ate pairing (including other variants of the Tate pairing) defined on the smaller domain is neither easier nor harder than inverting the Tate pairing defined on the lager domain. This is very interesting because it is commonly believed that the structure of the Ate pairing is so simple and good (that is, the Miller length is short, the solution domain is small and has an algebraic structure induced from the Frobenius map) that it may leak some information, thus there would be a chance for attackers to find further approach to solve FAPI for the Ate pairing, differently from the Tate pairing.

ePrint: https://eprint.iacr.org/2012/657

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .