[Resource Topic] 2012/362: Achieving Constant Round Leakage-Resilient Zero-Knowledge

Welcome to the resource topic for 2012/362

Title:
Achieving Constant Round Leakage-Resilient Zero-Knowledge

Authors: Omkant Pandey

Abstract:

Recently there has been a huge emphasis on constructing cryptographic protocols that maintain their security guarantees even in the presence of side channel attacks. Such attacks exploit the physical characteristics of a cryptographic device to learn useful information about the internal state of the device. Designing protocols that deliver meaningful security even in the presence of such leakage attacks is a challenging task. The recent work of Garg, Jain, and Sahai formulates a meaningful notion of zero-knowledge in presence of leakage; and provides a construction which satisfies a weaker variant of this notion called (1+e)-leakage-resilient-zero-knowledge, for every constant e>0. In this weaker variant, roughly speaking, if the verifier learns L bits of leakage during the interaction, then the simulator is allowed to access (1+e).L bits of leakage. The round complexity of their protocol is n/e. In this work, we present the first construction of leakage-resilient zero-knowledge satisfying the ideal requirement of e=0. While our focus is on a feasibility result for e=0, our construction also enjoys a constant number of rounds. At the heart of our construction is a new public-coin preamble'' which allows the simulator to recover arbitrary information from a (cheating) verifier in a straight line.‘’ We use non-black-box simulation techniques to accomplish this goal.

ePrint: https://eprint.iacr.org/2012/362

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .