[Resource Topic] 2012/309: Fast and compact elliptic-curve cryptography

Welcome to the resource topic for 2012/309

Title:
Fast and compact elliptic-curve cryptography

Authors: Mike Hamburg

Abstract:


Elliptic curve cryptosystems have improved greatly in speed over the past few years. In this paper we outline a new elliptic curve signature and key agreement implementation which achieves record speeds while remaining relatively compact. For example, on Intel Sandy Bridge, a curve with about 2^{250} points produces a signature in just under 60k clock cycles, verifies in under 169k clock cycles, and computes a Diffie-Hellman shared secret in under 153k clock cycles. Our implementation has a small footprint: the library is under 55kB. We also post competitive timings on ARM processors, verifying a signature in under 626k Tegra-2 cycles. We introduce faster field arithmetic, a new point compression algorithm, an improved fixed-base scalar multiplication algorithm and a new way to verify signatures without inversions or coordinate recovery. Some of these improvements should be applicable to other systems.

ePrint: https://eprint.iacr.org/2012/309

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .