Welcome to the resource topic for 2012/211
Title:
Strongly Secure Authenticated Key Exchange from Factoring, Codes, and Lattices
Authors: Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, Kazuki Yoneyama
Abstract:An unresolved problem in research on authenticated key exchange (AKE) is to construct a secure protocol against advanced attacks such as key compromise impersonation and maximal exposure attacks without relying on random oracles. HMQV, a state of the art AKE protocol, achieves both efficiency and the strong security proposed by Krawczyk (we call it the CK+ model), which includes resistance to advanced attacks. However, the security proof is given under the random oracle model. We propose a generic construction of AKE from a key encapsulation mechanism (KEM). The construction is based on a chosen-ciphertext secure KEM, and the resultant AKE protocol is CK+ secure in the standard model. The construction gives the first CK+ secure AKE protocols based on the hardness of integer factorization problem, code-based problems, or learning problems with errors. In addition, instantiations under the Diffie-Hellman assumption or its variant can be proved to have strong security without non-standard assumptions such as $\pi$PRF and KEA1. Furthermore, we extend the CK+ model to identity-based (called the id-CK+ model), and propose a generic construction of identity-based AKE (ID-AKE) based on identity-based KEM, which satisfies id-CK+ security. The construction leads first strongly secure ID-AKE protocols under the hardness of integer factorization problem, or learning problems with errors.
ePrint: https://eprint.iacr.org/2012/211
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .