[Resource Topic] 2012/045: Signature Schemes Secure against Hard-to-Invert Leakage

Welcome to the resource topic for 2012/045

Title:
Signature Schemes Secure against Hard-to-Invert Leakage

Authors: Sebastian Faust, Carmit Hazay, Jesper Buus Nielsen, Peter Sebastian Nordholt, Angela Zottarel

Abstract:

Side-channel attacks allow the adversary to gain partial knowledge of the secret key when cryptographic protocols are implemented in real-world hardware. The goal of leakage resilient cryptography is to design crytosystems that withstand such attacks. In the auxiliary input model an adversary is allowed to see a computationally hard-to-invert function of the secret key. The auxiliary input model weakens the bounded leakage assumption commonly made in leakage resilient cryptography as the hard-to-invert function may information-theoretically reveal the entire secret key. In this work, we propose the first constructions of digital signature schemes that are secure in the auxiliary input model. Our main contribution is a digital signature scheme that is secure against chosen message attacks when given any exponentially hard-to-invert function of the secret key. As a second contribution, we construct a signature scheme that achieves security for random messages assuming that the adversary is given a polynomial-time hard-to-invert function (where both the challenge as well as the signatures seen prior to that are computed on random messages). Here, polynomial-hardness is required even when given the entire public-key. We further show that such signature schemes readily give us auxiliary input secure identification schemes.

ePrint: https://eprint.iacr.org/2012/045

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .

1 Like