[Resource Topic] 2012/033: A note on hyper-bent functions via Dillon-like exponents

Welcome to the resource topic for 2012/033

Title:
A note on hyper-bent functions via Dillon-like exponents

Authors: Sihem Mesnager, Jean-Pierre Flori

Abstract:

This note is devoted to hyper-bent functions with multiple trace terms (including binomial functions) via Dillon-like exponents. We show how the approach developed by Mesnager to extend the Charpin–Gong family and subsequently extended by Wang et al. fits in a much more general setting. To this end, we first explain how the original restriction for Charpin–Gong criterion can be weakened before generalizing the Mesnager approach to arbitrary Dillon-like exponents. Afterward, we tackle the problem of devising infinite families of extension degrees for which a given exponent is valid and apply these results not only to reprove straightforwardly the results of Mesnager and Wang et al., but also to characterize the hyper-bentness of new infinite classes of Boolean functions.

ePrint: https://eprint.iacr.org/2012/033

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .