Welcome to the resource topic for 2011/310
Title:
Universally Composable Synchronous Computation
Authors: Jonathan Katz, Ueli Maurer, Bjoern Tackmann, Vassilis Zikas
Abstract:In synchronous networks, protocols can achieve security guarantees that are not possible in an asynchronous world: i.e., they can simultaneously achieve input completeness (all honest parties’ inputs are included in the computation) and guaranteed termination (honest parties do not “hang” indefinitely). In practice truly syn- chronous networks rarely exist, but synchrony can be emulated if channels have (known) latency and parties have loosely synchronized clocks. The framework of universal composability (UC) is inherently asynchronous, but several approaches for adding synchrony to the framework have been proposed. However, we show that the existing proposals do not provide the expected guarantees. Given this, we propose a “clean slate” approach to defining synchrony in the UC framework by introducing functionalities exactly meant to model, respectively, bounded-delay networks and loosely synchronized clocks. We show that the expected guarantees of synchronous computation can be realized given these functionalities, and that previous models can all be expressed within our new framework.
ePrint: https://eprint.iacr.org/2011/310
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .