Welcome to the resource topic for 2011/233
Title:
Correlated-Input Secure Hash Functions
Authors: Vipul Goyal, Adam O'Neill, Vanishree Rao
Abstract:We undertake a general study of hash functions secure under {\em correlated inputs}, meaning that security should be maintained when the adversary sees hash values of many related high-entropy inputs. Such a property is satisfied by a random oracle, and its importance is illustrated by study of the avalanche effect,'' a well-known heuristic in cryptographic hash function design. One can interpret
security’’ in different ways: e.g., asking for one-wayness or that the hash values look uniformly and independently random; the latter case can be seen as a generalization of correlation-robustness introduced by Ishai et al.~(CRYPTO 2003). We give specific applications of these notions to password-based login and efficient search on encrypted data. Our main construction achieves them (without random oracles) for inputs related by {\em polynomials} over the input space (namely \zz_p for a prime number p), based on corresponding variants of the q-Diffie Hellman Inversion assumption. Additionally, we show relations between correlated-input secure hash functions and cryptographic primitives secure under related-key attacks. Using our techniques, we are also able to obtain a host of new results for such related-key attack secure cryptographic primitives.
ePrint: https://eprint.iacr.org/2011/233
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .