Welcome to the resource topic for 2011/018
Title:
Homomorphic Signatures for Polynomial Functions
Authors: Dan Boneh, David Mandell Freeman
Abstract:We construct the first homomorphic signature scheme that is capable of evaluating multivariate polynomials on signed data. Given the public key and a signed data set, there is an efficient algorithm to produce a signature on the mean, standard deviation, and other statistics of the signed data. Previous systems for computing on signed data could only handle linear operations. For polynomials of constant degree, the length of a derived signature only depends logarithmically on the size of the data set. Our system uses ideal lattices in a way that is a ``signature analogue’’ of Gentry’s fully homomorphic encryption. Security is based on hard problems on ideal lattices similar to those in Gentry’s system.
ePrint: https://eprint.iacr.org/2011/018
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .