Welcome to the resource topic for 2011/004
Title:
A low-memory algorithm for finding short product representations in finite groups
Authors: Gaetan Bisson, Andrew V. Sutherland
Abstract:We describe a space-efficient algorithm for solving a generalization of the subset sum problem in a finite group G, using a Pollard-rho approach. Given an element z and a sequence of elements S, our algorithm attempts to find a subsequence of S whose product in G is equal to z. For a random sequence S of length d*log2(n), where n=#G and d>=2 is a constant, we find that its expected running time is O(sqrt(n)*log(n)) group operations (we give a rigorous proof for d>4), and it only needs to store O(1) group elements. We consider applications to class groups of imaginary quadratic fields, and to finding isogenies between elliptic curves over a finite field.
ePrint: https://eprint.iacr.org/2011/004
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .