[Resource Topic] 2009/540: Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups

Welcome to the resource topic for 2009/540

Title:
Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups

Authors: David Mandell Freeman

Abstract:

We develop an abstract framework that encompasses the key properties of bilinear groups of composite order that are required to construct secure pairing-based cryptosystems, and we show how to use prime-order elliptic curve groups to construct bilinear groups with the same properties. In particular, we define a generalized version of the subgroup decision problem and give explicit constructions of bilinear groups in which the generalized subgroup decision assumption follows from the decision Diffie-Hellman assumption, the decision linear assumption, and/or related assumptions in prime-order groups. We apply our framework and our prime-order group constructions to create more efficient versions of cryptosystems that originally required composite-order groups. Specifically, we consider the Boneh-Goh-Nissim encryption scheme, the Boneh-Sahai-Waters traitor tracing system, and the Katz-Sahai-Waters attribute-based encryption scheme. We give a security theorem for the prime-order group instantiation of each system, using assumptions of comparable complexity to those used in the composite-order setting. Our conversion of the last two systems to prime-order groups answers a problem posed by Groth and Sahai.

ePrint: https://eprint.iacr.org/2009/540

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .