Welcome to the resource topic for 2009/449
Title:
One for All - All for One: Unifying Standard DPA Attacks
Authors: Stefan Mangard, Elisabeth Oswald, Francois-Xavier Standaert
Abstract:In this paper, we examine the relationship between and the efficiency of different approaches to standard (univariate) DPA attacks. We first show that, when feeded with the same assumptions about the target device (i.e. with the same leakage model), the most popular approaches such as using a distance-of-means test, correlation analysis, and Bayes attacks are essentially equivalent in this setting. Differences observed in practice are not due to differences in the statistical tests but due to statistical artifacts. Then, we establish a link between the correlation coefficient and the conditional entropy in side-channel attacks. In a first-order attack scenario, this relationship allows linking currently used metrics to evaluate standard DPA attacks (such as the number of power traces needed to perform a key recovery) with an information theoretic metric (the mutual information). Our results show that in the practical scenario defined formally in this paper, both measures are equally suitable to compare devices in respect to their susceptibility to DPA attacks. Together with observations regarding key and algorithm independence we consequently extend theoretical strategies for the sound evaluation of leaking devices towards the practice of side-channel attacks.
ePrint: https://eprint.iacr.org/2009/449
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .