Welcome to the resource topic for 2009/428
Title:
Efficiently from Semi-honest to Malicious OT via OLFE
Authors: Jürg Wullschleger
Abstract:A combiner securely implements a functionality out of a set implementations of another functionality from which some may be insecure. We present two efficient combiners for oblivious linear function evaluation (OLFE). The first is a constant-rate OLFE combiner in the semi-honest model, the second combiner implements Rabin string oblivious transfer (RabinOT) from OLFE in the malicious model. As an application, we show a very efficient reductions in the malicious model of RabinOT over strings to one-out-of-two oblivious transfer over bits (OT) that is only secure in the semi-honest model. For string of size \ell = \omega(k^2), our reductions uses only 4 \ell + o(\ell) instances of OT, while previous results required \Omega(\ell k^2). Our new reduction leads to an efficiency improvement for general multi-party computation (MPC) based on semi-honest OT, and makes it almost as efficient as MPC based on malicious OT. All reductions are unconditionally secure, black-box, universally composable and secure against adaptive adversaries.
ePrint: https://eprint.iacr.org/2009/428
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .