Welcome to the resource topic for 2008/456
Title:
The Diffie-Hellman problem and generalization of Verheul’s theorem
Authors: Dustin Moody
Abstract:Bilinear pairings on elliptic curves have been of much interest in cryptography recently. Most of the protocols involving pairings rely on the hardness of the bilinear Diffie-Hellman problem. In contrast to the discrete log (or Diffie-Hellman) problem in a finite field, the difficulty of this problem has not yet been much studied. In 2001, Verheul \cite{Ver} proved that on a certain class of curves, the discrete log and Diffie-Hellman problems are unlikely to be provably equivalent to the same problems in a corresponding finite field unless both Diffie-Hellman problems are easy. In this paper we generalize Verheul’s theorem and discuss the implications on the security of pairing based systems. We also include a large table of distortion maps.
ePrint: https://eprint.iacr.org/2008/456
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .