[Resource Topic] 2008/295: Foundations of Group Key Management – Framework, Security Model and a Generic Construction

Welcome to the resource topic for 2008/295

Foundations of Group Key Management – Framework, Security Model and a Generic Construction

Authors: Naga Naresh Karuturi, Ragavendran Gopalakrishnan, Rahul Srinivasan, Pandu Rangan Chandrasekaran


Group Key Establishment is fundamental for a variety of security mechanisms in group applications. It allows n > 1 principals to agree upon a common secret key. This can further be classified into Group Key Exchange (or Group Key Agreement), where all the principals participate in the construction of the key, and Group Key Transport (or Group Key Distribution), where the key is chosen by a singe principal and is then securely communicated to the others. Both these techniques can be analyzed in the context of either static or dynamic groups. Dynamic Group Key Establishment is better known as Group Key Management (GKM), as it involves not only the initital key establishment, but also efficient key management when group members join or leave the group. Dynamic Group Key Exchange is also known as decentralized or distributed GKM, while Dynamic Group Key Transport is known as centralized GKM. While there has been a lot of recent work in formal security models for Dynamic Group Key Exchange, little, if any, attention has been directed towards building a concrete framework and formal security model for centralized GKM. Many such schemes that have been proposed so far have been broken, as they cite ambiguous arguments and lack formal proofs. In this paper, we take a first step towards addressing this problem by providing firm foundations for centralized Group Key Management. We provide a generalized framework for centralized GKM along with a formal security model and strong definitions for the security properties that dynamic groups demand. We also show a generic construction of a centralized GKM scheme from any given multi-receiver ID-based Key Encapsulation Mechanism (mID-KEM). By doing so, we unify two concepts that are significantly different in terms of what they achieve. Our construction is simple and efficient. We prove that the resulting GKM inherits the security of the underlying mID-KEM up to CCA security. We also illustrate our general conversion using the mID-KEM proposed in 2007 by Delerablée.

ePrint: https://eprint.iacr.org/2008/295

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .