[Resource Topic] 2008/235: Constant-Round Concurrent Non-Malleable Commitments and Decommitments

Welcome to the resource topic for 2008/235

Title:
Constant-Round Concurrent Non-Malleable Commitments and Decommitments

Authors: Rafail Ostrovsky, Giuseppe Persiano, Ivan Visconti

Abstract:

In this paper we consider commitment schemes that are secure against concurrent poly-time man-in-the-middle (cMiM) attacks. Under such attacks, two possible notions of security for commitment schemes have been proposed in the literature: concurrent non-malleability with respect to commitment and concurrent non-malleability with respect to decommitment (i.e., opening). After the original notion of non-malleability introduced by [Dolev, Dwork and Naor STOC 91] that is based on the independence of the committed and decommitted message, a new and stronger notion of non-malleability has been given in [Pass and Rosen STOC 05] by requiring that for any man-in-the-middle adversary there is a stand-alone adversary that succeeds with the same probability. Under this stronger security notion, a constant-round commitment scheme that is concurrent non-malleable only with respect to commitment has been given in [Pass and Rosen FOCS 05] for the plain model, thus leaving as an open problem the construction of a constant-round concurrent non-malleable commitments with respect to decommitment. In other words, in [Pass and Rosen FOCS 05] security against adversaries that mount concurrent man-in-the-middle attacks is guaranteed only during the commitment phase (under their stronger notion of non-malleability). The main result of this paper is a commitment scheme that is concurrent non-malleable with respect to both commitment and decommitment, under the stronger notion of [Pass and Rosen STOC 05]. This property protects against cMiM attacks mounted during both commitments and decommitments which is a crucial security requirement in several applications, as in some digital auctions, in which players have to perform both commitments and decommitments. Our scheme uses a constant number of rounds of interaction in the plain model and is the first scheme that enjoys all these properties under the definitions of [Pass and Rosen FOCS 05]. We stress that, exactly as in [Pass and Rosen FOCS 05], we assume that commitments and decommitments are performed in two distinct phases that do not overlap in time.

ePrint: https://eprint.iacr.org/2008/235

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .