[Resource Topic] 2008/171: Binary Edwards Curves

Welcome to the resource topic for 2008/171

Title:
Binary Edwards Curves

Authors: Daniel J. Bernstein, Tanja Lange, Reza Rezaeian Farashahi

Abstract:

This paper presents a new shape for ordinary elliptic curves over fields of characteristic 2. Using the new shape, this paper presents the first complete addition formulas for binary elliptic curves, i.e., addition formulas that work for all pairs of input points, with no exceptional cases. If n >= 3 then the complete curves cover all isomorphism classes of ordinary elliptic curves over F_2^n. This paper also presents dedicated doubling formulas for these curves using 2M + 6S + 3D, where M is the cost of a field multiplication, S is the cost of a field squaring, and D is the cost of multiplying by a curve parameter. These doubling formulas are also the first complete doubling formulas in the literature, with no exceptions for the neutral element, points of order 2, etc. Finally, this paper presents complete formulas for differential addition, i.e., addition of points with known difference. A differential addition and doubling, the basic step in a Montgomery ladder, uses 5M + 4S + 2D when the known difference is given in affine form.

ePrint: https://eprint.iacr.org/2008/171

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .