Welcome to the resource topic for 2008/060
Title:
Fast Algorithms for Arithmetic on Elliptic Curves Over Prime Fields
Authors: Nicholas T. Sullivan
Abstract:We present here a thorough discussion of the problem of fast arithmetic on elliptic curves over prime order finite fields. Since elliptic curves were independently pro- posed as a setting for cryptography by Koblitz [53] and Miller [67], the group of points on an elliptic curve has been widely used for discrete logarithm based cryptosystems. In this thesis, we survey, analyse and compare the fastest known serial and parallel algorithms for elliptic curve scalar multiplication, the primary operation in discrete logarithm based cryptosystems. We also introduce some new algorithms for the basic group operation and several new parallel scalar multiplication algorithms. We present a mathematical basis for comparing the various algorithms and make recommendations for the fastest algorithms to use in different circumstances.
ePrint: https://eprint.iacr.org/2008/060
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .