Welcome to the resource topic for 2007/457
Title:
Comparing Implementation Efficiency of Ordinary and Squared Pairings
Authors: Christine Abegail Antonio, Tanaka Satoru, Ken Nakamula
Abstract:In this paper, we will implement a standard probabilistic method of computing bilinear pairings. We will compare its performance to a deterministic algorithm introduced in [5] to compute the squared Tate/Weil pairings which are claimed to be 20 percent faster than the standard method. All pairings will be evaluated over pairing-friendly ordinary elliptic curves of embedding degrees 8 and 10 and a supersingular curve of embedding degree 6. For these curves, we can make the algorithm to compute both the ordinary Weil and Tate pairings deterministic and optimizations to improve the algorithms are applied. We will show that the evaluation of squared Weil pairing is, indeed, faster than the ordinary Weil pairing even with optimizations. However, evaluation of the squared Tate pairing is not faster than the ordinary Tate pairing over the curves that we used when optimizations are applied.
ePrint: https://eprint.iacr.org/2007/457
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .