[Resource Topic] 2007/441: Faster Group Operations on Elliptic Curves

Welcome to the resource topic for 2007/441

Title:
Faster Group Operations on Elliptic Curves

Authors: Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson

Abstract:

This paper improves implementation techniques of Elliptic Curve Cryptography. We introduce new formulae and algorithms for the group law on Jacobi quartic, Jacobi intersection, Edwards, and Hessian curves. The proposed formulae and algorithms can save time in suitable point representations. To support our claims, a cost comparison is made with classic scalar multiplication algorithms using previous and current operation counts. Most notably, the best speedup is obtained in the case of Jacobi quartic curves which also lead to one of the most efficient scalar multiplications benefiting from the proposed 2M + 5S + 1D (i.e. 2 multiplications, 5 squarings, and 1 multiplication by a curve constant) point doubling and 7M + 3S + 1D point addition algorithms. Furthermore, the new addition algorithm provides an efficient way to protect against side channel attacks which are based on simple power analysis (SPA).

ePrint: https://eprint.iacr.org/2007/441

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .