Welcome to the resource topic for 2007/379
Title:
On The Inequivalence Of Ness-Helleseth APN Functions
Authors: Xiangyong Zeng, Lei Hu, Yang Yang, Wenfeng Jiang
Abstract:In this paper, the Ness-Helleseth functions over F_{p^n} defined by the form f(x)=ux^{\frac{p^n-1}{2}-1}+x^{p^n-2} are proven to be a new class of almost perfect nonlinear (APN) functions and they are CCZ-inequivalent with all other known APN functions when p\geq 7. The original method of Ness and Helleseth showing the functions are APN for p=3 and odd n\geq 3 is also suitable for showing their APN property for any prime p\geq 7 with p\equiv 3\,({\rm mod}\,4) and odd n.
ePrint: https://eprint.iacr.org/2007/379
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .