Welcome to the resource topic for 2007/280
Title:
On solving sparse algebraic equations over finite fields II
Authors: Igor Semaev
Abstract:A system of algebraic equations over a finite field is called sparse if each equation depends on a small number of variables. Finding efficiently solutions to the system is an underlying hard problem in the cryptanalysis of modern ciphers. In this paper deterministic Agreeing-Gluing algorithm introduced earlier by Raddum and Semaev for solving such equations is studied. Its expected running time on uniformly random instances of the problem is rigorously estimated. This estimate is at present the best theoretical bound on the complexity of solving average instances of the above problem. In particular, it significantly overcomes our previous results. In characteristic 2 we observe an exciting difference with the worst case complexity provided by SAT solving algorithms.
ePrint: https://eprint.iacr.org/2007/280
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .