[Resource Topic] 2007/117: Improving the lower bound on the higher order nonlinearity of Boolean functions with prescribed algebraic immunity

Welcome to the resource topic for 2007/117

Title:
Improving the lower bound on the higher order nonlinearity of Boolean functions with prescribed algebraic immunity

Authors: Sihem Mesnager

Abstract:

The recent algebraic attacks have received a lot of attention in cryptographic literature. The algebraic immunity of a Boolean function quantifies its resistance to the standard algebraic attacks of the pseudo-random generators using it as a nonlinear filtering or combining function. Very few results have been found concerning its relation with the other cryptographic parameters or with the r-th order nonlinearity. As recalled by Carlet at Crypto’06, many papers have illustrated the importance of the $r$th-order nonlinearity profile (which includes the first-order nonlinearity). The role of this parameter relatively to the currently known attacks has been also shown for block ciphers. Recently, two lower bounds involving the algebraic immunity on the $r$th-order nonlinearity have been shown by Carlet et \emph{al}. None of them improves upon the other one in all situations. In this paper, we prove a new lower bound on the $r$th-order nonlinearity profile of Boolean functions, given their algebraic immunity, that improves significantly upon one of these lower bounds for all orders and upon the other one for low orders.

ePrint: https://eprint.iacr.org/2007/117

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .