Welcome to the resource topic for 2007/105
Title:
Isodual Reduction of Lattices
Authors: Nicholas A. Howgrave-Graham
Abstract:We define a new notion of a reduced lattice, based on a quantity introduced in the LLL paper. We show that lattices reduced in this sense are simultaneously reduced in both their primal and dual. We show that the definition applies naturally to blocks, and therefore gives a new hierarchy of polynomial time algorithms for lattice reduction with fixed blocksize. We compare this hierarchy of algorithms to previous ones. We then explore algorithms to provably minimize the associated measure, and also some more efficient heuristics. Finally we comment on the initial investigations of applying our technique to the NTRU family of lattices.
ePrint: https://eprint.iacr.org/2007/105
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .