[Resource Topic] 2005/342: Special Polynomial Families for Generating More Suitable Elliptic Curves for Pairing-Based Cryptosystems

Welcome to the resource topic for 2005/342

Title:
Special Polynomial Families for Generating More Suitable Elliptic Curves for Pairing-Based Cryptosystems

Authors: Pu Duan, Shi Cui, Choong Wah Chan

Abstract:

Constructing non-supersingular elliptic curves for pairing-based cryptosystems have attracted much attention in recent years. The best previous technique builds curves with p = lg(q)/lg(r) = 1 (k = 12) and p = lg(q)/lg(r) = 1.25 (k = 24). When k > 12, most of the previous works address the question by representing r(x) as a cyclotomic polynomial. In this paper, we propose a new method to find more pairing-friendly elliptic curves with arbitrary embedding degree k by certain special polynomial families. The new method generates curves with lg(q)/lg(r) = 1 (k > 48) by random forms of r(x). Different representations of r(x) allow us to obtain many new families of pairing-friendly elliptic curves. In addition, we propose a equation to illustrate how to obtain small values of p by choosing appropriate forms of discriminant D and trace t. Numerous parameters of certain pairing-friendly elliptic curves are presented with support for the theoretical conclusions.

ePrint: https://eprint.iacr.org/2005/342

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .