Welcome to the resource topic for 2002/021
Title:
Spectral Analysis of Boolean Functions under Non-uniformity of Arguments
Authors: Kanstantsin Miranovich
Abstract:For independent binary random variables x_1,…,x_n and a Boolean function f(x), x=(x_1,…,x_n), we suppose that |1/2 - P{x_i = 1}|<=e, 1<=i<=n. Under these conditions we present new characteristics D_F(f(),e) = max{|1/2 - P{y=1}|} of the probability properties of Boolean functions, where y = F(x), and F(x) being equal to 1) F(x)=f(x), 2) F(x)=f(x)+(a,x), 3) F(x)=f(x)+f(x+a), and investigate their properties.
Special attention is paid to the classes of balanced and correlation immune functions, bent functions, and second order functions, for which upper estimates of D_F(f(),e) are found and statements
on behaviour of sequences f^{(n)}(x) of functions of n arguments are made.
ePrint: https://eprint.iacr.org/2002/021
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .