Welcome to the resource topic for 2006/133
Title:
Low Complexity Bit-Parallel Square Root Computation over GF(2^m) for all Trinomials
Authors: Francisco Rodríguez-Henríquez, Guillermo Morales-Luna, Julio López-Hernández
Abstract:In this contribution we introduce a low-complexity bit-parallel algorithm for computing square roots over binary extension fields. Our proposed method can be applied for any type of irreducible polynomials. We derive explicit formulae for the space and time complexities associated to the square root operator when working with binary extension fields generated using irreducible trinomials. We show that for those finite fields, it is possible to compute the square root of an arbitrary field element with equal or better hardware efficiency than the one associated to the field squaring operation. Furthermore, a practical application of the square root operator in the domain of field exponentiation computation is presented. It is shown that by using as building blocks squarers, multipliers and square root blocks, a parallel version of the classical square-and-multiply exponentiation algorithm can be obtained. A hardware implementation of that parallel version may provide a speedup of up to 50% percent when compared with the traditional version.
ePrint: https://eprint.iacr.org/2006/133
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .